Category Archives: Science

New Pristionchus polyphenism paper out!

ErikblogLong time friend and fellow Sommer Lab postdoc just had a great paper come out in the most recent issue of Cell. Though I didn’t contribute anything intellectually to the paper, I was able at least to help them out with a couple images for Figure 1. I think the paper is a good demonstration of why one shouldn’t be afraid of working with non-standard model organisms.

Erik (along with Manuela Müller and Christian Rödelsperger, also in the lab) explores the mechanisms by which developmental plasticity Continue reading

Pristionchus on the cover of Evolution & Development

EvoDevoCover001One of the groups in our lab, headed up by postdoc Erik Ragsdale, is investigating the genetics and evolution of a feeding polyphenism in Pristionchus. They just had a nice paper come out in Evolution & Development entitled: “Feeding plasticity in the nematode Pristionchus pacificus is influenced by sex and social context and is linked to developmental speed.” Once it was accepted, they asked me to help design a cover submission. I used some still captures from some of my predatory feeding movies, and the cover was accepted! Score another point for my artistic career! Check out the paper, and expect more cool work from this group on the same polyphenism to be coming out later this year.

My thoughts on the first BRAIN initiative meeting

cropped-Gogli1The first of a series of planning meetings for the BRAIN initiative took place early this week in Arlington, VA. Officially called the NSF Workshop on the Physical Principles of Brain Structure and Function, it collected many of the nation’s most prominent neuroscientists together into a stuffy hotel conference room to Continue reading

Getting the message out in the good old U.S.A.

WP_20130321_003Just got back from a whirlwind tour of the greater Washington D.C. area, where I was given my opportunity to present my work at two different institutions. My first stop was Janelia Farm, a Howard Hughes institute and one of the major drivers that are pushing the electron microscopy and computational technologies needed for large scale synapse-level connectomics work. I was invited by Albert Cardona Continue reading

An artistic contribution to worm neuroanatomy.

sideview4Bumbargercover1In annotating all of the connectivity for my recent comparative connectomics papers, one of the byproducts was a massive 3D model of the anatomy of all the cells in the nervous system. For me, these models are fascinating to look at and  I enjoy when I get a chance to admire some of the beauty in the data I generate. I spent some time making some 3D rendering of the models using Blender ( in order to submit them as possible covers for the issue in which the paper was published… they weren’t chosen for the cover, but I still want to share them with the world!  Click the images to see them larger on my FLICKR page, and let me know what you think!

Data is online at Open Connectome

brainsectionWhen image stacks are acquired for generating connectivity datasets, there is so much information in the micrographs that does not make it into the first manuscript. As these datasets are extremely difficult to acquire, I think it is important that we try and make the data as openly available as possible. This, however, is not an easy task… it requires you to spend quite a bit of time developing a resource… time that could be spent generating more data or writing papers. As such, I am terribly thankful that the folks at have developed a resource for making easy for people such as myself to host their image data in a useful way. Right now, one of the Continue reading

Journal Club: Connecting a Connectome to Behavior

0yks_X4B3uHScKQYMpmLDzl72eJkfbmt4t8yenImKBVaiQDB_Rd1H6kmuBWtceBJAn obvious goal of connectomics is to use it is a tool for better understanding complex network function. As new data are becoming available it is  not entirely clear what the best methods are for extracting useful information out of connectivity matrices. Part of the problem lies in the fact that while a wiring diagram is necessary for understanding nervous system function, it is hardly sufficient. The painful reality is that in complex systems like networks of neurons, small details of neuron and synapse function can dramatically alter system behavior. A recent Plos Computational Biology paper by Eduardo Izquierdo and Randall Beer at Indiana University makes what I think is a useful contribution to the problem by Continue reading